

TERRAFORM& AZURE RESOURCEMANAGER (ARM) TEMPLATES

This brief outlines Liatrio’s point of view and comparison between Hashicorp’s
Terraform and Microsoft's Azure Resource Manager (ARM) templates.

Problem Statement
With the ever-expanding need for dynamic, reliable, and repeatable infrastructure,
traditionally manual approaches to creation and management cannot scale. A way to
define Infrastructure-as-Code (IaC), which enables automation, is necessary to meet
demands.

Terraform and ARM templates are distinct tools for defining and orchestrating IaC.

Our Background
This recommendation is grounded in our expertise and real-world experience with
multiple clients with various delivery patterns. Liatrio engineers bring a diverse
background of hands-on demonstrations of value through reference implementations
as well as cross-team collaboration. In this brief, we will discuss both the challenges
and benefits of using Terraform and ARM templates in the context of an enterprise.

Top Value Points
While there is much that can be said for both tools, Liatrio believes these points to be
the main differentiators between the two solutions:

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

https://www.terraform.io/
https://www.terraform.io/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview

Terraform
● Universally extendable through providers, to include the

capability for any infrastructure, service, and application
configuration.

● Can handle complex order-of-operations and composability
of individual resources and encapsulated modules.

● Broad open source community for hundreds of providers and
thousands of modules that are typically leveraged in an
enterprise environment, with easy-to-find documentation
and examples.

● Microsoft supports and collaborates directly with Hashicorp
on building and maintaining related Terraform providers.

● There are over 50 million installations of the main Azure
provider.

● Tracks state of real-world resources, which makes Day 2 and
onward operations easier, and more powerful.

ARM Templates
● Lockstep support for all Azure resources, since ARM

templates are a native representation of the cloud services.
● Provides the ability to both authors from scratch, or start

from existing services or infrastructure via an export.
● Provides more effective validation and a preview of changes

for Azure resources specifically, when compared to general
IaC tooling.

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

https://docs.microsoft.com/en-us/azure/developer/terraform/
https://www.hashicorp.com/cloud-partners/microsoft
https://registry.terraform.io/providers/hashicorp/azurerm/latest

A Closer Look
Terraform and ARM templates can seem very similar on the surface. Both
self-described as tools to facilitate infrastructure as code; allowing users to level up
their DevOps practices with improved speed and confidence. Both have ways to
handle reuse with parameterization and forms of modularization, the ability to
preview changes before applying them, and are generally friendly to automation and
source code management (SCM) tools. With all that these tools appear to have in
common, it may give the impression that there is not much to strongly debate. But as
stated prior in the “Top Value Points”, there are critical differentiators that we believe
make the choice definitive.

First is the universal extensibility of Terraform, achieved through the design of
providers. The ability to define virtually any category of infrastructure, service,
application, or other configuration cannot be understated when compared to ARM
templates that are solely for the definition of Azure services. That capability translates
into:

● A single investment in learning and building around a new tool. This does not
mean that Terraform is a Golden Hammer. But it is best-in-class for
orchestrating many common infrastructure platforms and services, not just
Azure. Enterprise-size organizations are extremely likely to have other areas
that could benefit from Terraform as well. This single investment will pay
long-term dividends, as new teams and problem areas look to improve with
DevOps best practices. The new in-house knowledge and practices with
Terraform will prove quickly adaptable.

● The community of users and support around Terraform is naturally larger than
that for ARM templates. This is because it can be used in infinitely more cases,
and the basics of Terraform translate to all. This larger community will mean
more sources of open knowledge, such as for example usage patterns or
common troubleshooting issues that others have already solved. As well,
finding candidates with Terraform experience during hiring will be much more
common.

● The extensibility means that an organization has more opportunities for
customization or innovation, as needed. Most Terraform providers welcome
open source contributions for fixes or features, and an organization can wholly
author a new provider to solve their specific use-case.

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

Another important distinction is the concept of tracking the state of real-world
resources. State is a core component of Terraform. Every resource, whether a virtual
machine, storage bucket, or IAM policy, has all of its defining properties recorded by
Terraform. Each time Terraform is “applied”, it checks what the current IaC defines, as
well as refreshes its view of the real world resources based on the previously recorded
state information. ARM templates do not have functionality that resembles state
tracking. Each “application” of an ARM template takes a simpler approach of making
idempotent requests for each defined resource to its respective REST API endpoint.
The ability to keep state is what powers Terraform to be a better tool beyond Day 1
operations. The easiest example is the destruction of resources when they are no
longer needed. When a resource is no longer present in the IaC, Terraform still knows
that resource exists in the real world, and will handle destroying its real-world
counterpart. ARM templates cannot handle this type of operation by default. If a
resource is no longer defined in the ARM template, ARM has no way of knowing that a
real-world resource needs to be destroyed. This leaves real infrastructure in a dangling
condition, over utilizing and in a public cloud scenario incurring unneeded costs. This
same scenario can even occur with simple renames of infrastructure, if that rename
would constitute a new instance of a resource.

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

Recommendation
Liatrio recommends that Terraform should be the first choice for
Infrastructure-as-Code (IaC) tooling. As such, Liatrio recommends Terraform over
ARM templates.

Terraform provides a more consistent code-first (engineering) approach to modern
source control, versioning, testing, and deployment pipeline practices. This helps align
organizations on DevOps principles.

Terraform provides cross-platform and cross-service functionality. Whether your
infrastructure is running on-prem or in the various public cloud providers, Terraform is
portable and reusable, ultimately making Terraform the best return on investment.
Learning and adopting new tools and approaches can be costly, but once a team has
learned Terraform the modules and approaches can be applied to new and future
platforms, tools, and configurations.

We believe that Terraform lays the foundation and skill set for attracting new talent
and for building a strong engineering culture. This will make hiring additional
engineers easier and more appealing.

In addition to producing Infrastructure as a Service (IaaS), Terraform can easily be
used for Platform as a Service (PaaS) offerings as well as “Day 2” operations, e.g.
maintenance, upgrades, and new features.

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

Other Considerations
What if my organization is all in on Microsoft’s Azure, does it make
sense to use ARM templates over Terraform?
Liatrio believes Terraform should still be the first choice for IaC. Terraform is a single,
well-constructed orchestration tool with a vast library of plug-and-play integrations.
These integrations include things outside of infrastructure, ranging from configuration
of SaaS Data offerings like Databricks, to self-hosted Identity Providers like Keycloak.
While ARM templates may be an okay choice to meet the business pressure of today,
Terraform will give your team the ability to grow and adapt your automation to
support future needs with a tool you are already familiar with.

What if I adopt Terraform and encounter a gap in a Terraform provider
functionality?
From our experience, it is rare to encounter a situation where a particular provider
from a vendor or open-source community would not exist. We have encountered
providers that exist, but maybe missing a particular resource or resource
configuration. In those instances, Liatrio partners with our customer to contribute
back to the provider, implementing the missing feature. This usually means creating a
pull request to an open source repository, but may involve other steps depending on
the provider’s contribution model.

I already have existing Azure resources that were createdmanually,
why not export them as ARM templates?
It is not uncommon to have Azure resources that were created manually due to
timeline pressure or the initial scope of a project, and as that project matures the need
to have those resources be handled as IaC becomes apparent. ARM templates have the
unique ability to be exported directly from Azure resources through the Portal or CLI.
This can seem like a quick answer or stop-gap since you can have your existing
infrastructure as code in a moment. We believe that this route should be avoided for
both organizational and technical reasons.

Organizationally, IaC can only be as successful as the discipline of delivery teams to
use it. If a project has been delivered on manually created infrastructure thus far, it is
unlikely to have all of the surrounding automation built around the newly exported
ARM templates, or skill sets to maintain the ARM templates. This will lead to constantly

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

https://databricks.com/
https://www.keycloak.org/

out-of-date IaC as manual changes will inevitably still occur, and frustrations around
misaligned or misguided expectations of IaC.

On a technical side, we still believe that most organizations will ultimately arrive at the
conclusion that Terraform is the better tool for their needs, as they discover the
limitations of ARM templates over time. In this case, you will still have to learn and
build processes around Terraform, but with the additional sunk cost of time and effort
put into existing IaC with ARM templates.

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

About Liatrio

Liatrio is a catalyst for change. We enable our customers to
deliver value faster and safer by empowering people, teams,
and organizations throughmodern DevOps practices and
Cloud Technologies.

We do this by bringing deep industry experience, engineering excitement,
and a vested interest in our customers’ success — which becomes a
foundation for continuous improvement.

We embody and foster a culture of empathy, authenticity, and transparency.
We focus on delivery and always ensure that our talent brings passion and
excitement to our customers.

Our Core Capabilities
Enterprise DevOps
Transformation
Accelerate business results
and scale your organization
with a lean, value-driven
approach to software
delivery and IT operations.

Cloud Native Delivery
Empower your teams to
build scalable apps in
dynamic environments and
make high-impact changes
frequently and predictably
with little toil.

Modern Platform
Engineering
Reliable applications are
built on modern self-service
platforms that reduce
engineering friction.

DevSecOps
Speed of delivery while
always staying safe and
secure in an automated way.
Remove untimely, manual,
last gate siloed approvals
and validations.

Solutions Brief | Understanding Usage Patterns for Terraform & Azure Resource Manager (ARM) Templates | May 2021

