
How teams can leverage modern engineering practices to
deploy immutable infrastructure on Azure

INTRODUCTION

Infrastructure has traditionally run on-premise using fragile bare metal servers, with
heroics performed by seasoned ops engineers through endless patching and unique
configuration. Few things slow down software delivery more than infrastructure needs.
In the modern world of software development, technology advances have produced:

● Virtualized infrastructure with VMs, containers, or even “serverless”

● Cloud computing for scalable, reliable infrastructure

● Managed infrastructure services like IaaS and PaaS

Teams can take advantage of these capabilities by adopting infrastructure as code
(IaC). By leveraging IaC principals, infrastructure is handled with a defined software
development lifecycle (SDLC) where changes are made safely and easily.

Liatrio developed and implemented a robust SDLC process to define, test, and deploy
infrastructure. This pattern allows teams to confidently deploy their infrastructure on
the Azure cloud platform. This whitepaper goes through what teams need for creating
IaC:

● Adopting IaC principals and SDLC workflow

● Utilizing industry standard Terraform as an IaC orchestrator tool

● Managing infrastructure deployments with ADO Pipelines

● Leveraging Microsoft Azure ecosystem with ADO as the centralized SDLC tool
suite and Azure Cloud for infrastructure deployments

White Paper | Infrastructure as Code | June 2021

MODERN APPROACH TO MANAGING INFRASTRUCTURE

We treat our infrastructure as a product, just like our applications. Modern practices to
managing infrastructure should follow the same pattern as application development,
including:

● Everything as code

● All changes are code reviewed

● Code-level and functional testing

● Fast feedback loops

● Automated delivery and controls with pipelines

Infrastructure as Code
Infrastructure as Code is a paradigm for managing infrastructure resources’ life cycle in
the same way that the application code life cycle is managed. This involves defining all
resources within the environment in a declarative language, like Terraform, and using
a version control system, like Git, and managing changes to the infrastructure through
SDLC processes. Creation, deletion and modification of every resource in an
environment is then represented as a change to the code within the version control
system. This is similar to the process of managing the software delivery life cycle of a
software application.

IaC offers the ability to test, track and automate the life cycle of cloud resources in a
consistent and repeatable way. The ability to test, validate and automate changes to
the infrastructure leads to a reduction in unexpected failures within the provisioning
and change management of your infrastructure. Because changes to the infrastructure
live in source control, it allows the opportunity to use tools like pull requests and
approvals to make changes to the code, and therefore the infrastructure. Using strong
engineering practices and automation, changes to the infrastructure become traceable
back to a specific change in the code.

White Paper | Infrastructure as Code | June 2021

Immutable Infrastructure
No changes or configurations should happen outside of the source code and SDLC.
Immutability should be taken seriously and no changes should be made outside of the
initial desired state of delivered infrastructure. All changes should be made via code so
the infrastructure’s state being tracked remains accurate to avoid configuration drift.

Terraform for IaC
Terraform is our preferred tool to orchestrate our infrastructure using code. Terraform
allows infrastructure to be expressed as code and allows us to track and maintain the
state changes to infrastructure so that changes can be made only as needed and
configuration drift is minimized or eliminated.

Centralized SDLC
Using the Azure DevOps (ADO) platform, we are able to manage and orchestrate the
entire lifecycle of infrastructure. ADO’s tool suite enables a complete CI/CD pipeline to
deploy infrastructure and a single location to track work, code, and deployments.

White Paper | Infrastructure as Code | June 2021

SOFTWARE ENGINEERING PRACTICES FOR IAC

Certain prerequisites and process changes are required in order to enable a successful
IaC workflow. Below we describe several technical processes to assist with this,
however it is worth noting that changes with respect to working norms and team
interactions are equally important as they create the social contracts needed to
maintain IaC over time.

Managing IaC with Git
ADO Repos provides a fully featured Git-based implementation for version control of
code. All IaC code should live under version control, allowing the code to be shared,
reviewed and tracked.

Utilizing Git enables peer review and approval processes for change management of
infrastructure through branching and merging. Developers have the ability to checkout
the code locally, create a branch and make changes to the code. When changes are
ready to be introduced into the environment, a pull request is opened for peer review
and approval. After approval is received by the required parties involved, the change
can then be validated and introduced into the deployment process. This workflow is
very common in software delivery.

Automated Delivery with Pipelines
The full benefits of IaC are realized when the process of validating, testing and
deploying infrastructure is codified and automated via pipelines. Azure DevOps
provides a mechanism for defining tasks that should be performed on a code
repository and the frequency at which these tasks should be performed through Azure
Pipelines. Pipelines provide fast feedback to developers when the changes that are
committed to Git do not work as expected or do not pass validation tests.

By creating Pipelines as Code in Azure DevOps, we are able to store all steps in code so
we know when the process of building or testing our infrastructure or application
changes. Using Azure DevOps Pipelines and a good branching model, we are able to
automate these simple verification tasks so that errors can be caught early in the
process and before the change is introduced into the main code base.

White Paper | Infrastructure as Code | June 2021

Static Code Analysis/Linting
Linting is a common example of a very inexpensive check, which can be very expensive
if not caught early in the process. A linter is a tool that checks to ensure that code is
structured properly but it does not check the functionality of the code and can
typically be run with a single command in a few seconds. If a linting problem is
introduced into the codebase it may cause problems at deployment time, at which
time the approval and change process must be started again from the beginning to fix
the linting problem. To ensure that linting errors are not introduced into the
codebase, a pipeline should be used to run the linter against every change that is
made to the code. If the linter fails, the pipeline should fail and prevent the code from
moving forward in the approval process.

Testing & Validation
In software development, code requires validation and testing to ensure that the
software will run properly and as expected. The same is true with IaC. Some validation
tasks are more expensive than others because they may take more time or use more
resources. Pipelines can be used to define that these more expensive tests are run less
frequently, but always before code is introduced into the codebase and prepared to be
deployed.

White Paper | Infrastructure as Code | June 2021

Environment Management with GitOps
This effort seeks to apply the GitOps approach to replace legacy deployment tools with
manifest files in a Git repository and deployment pipeline in Azure DevOps. This
approach uses Git to maintain the definition of the desired state of each environment,
the path to request and approve changes, as well as a log of changes in the commit
history.

GitOps uses Git commits as the mechanism for defining an environment change as
well as triggering of the change. In this model, developers trigger changes to
environments by merging pull requests into the IaC deploy repository. Changes from a
developer’s branch should only be merged into dev. To promote changes to higher
environments PRs should be created from dev to staging and then from staging to
prod. Developers should never commit directly to an environment branch, nor should
they create a PR from their own branch to a branch other than dev.

White Paper | Infrastructure as Code | June 2021

https://www.liatrio.com/blog/gitops-enterprise-application-delivery

IAC DEPLOY REPOSITORY

The infrastructure code that defines each environment lives in a single Git repository.
In this repo, the Terraform code that describes the infrastructure is contained inside a
terraform directory with environment specific variables stored within separate .tfvars
files which influence environment configurations. . A deeper dive into
recommendations and set up for Terraform in a deploy repository and pipeline will be
explored in a separate Liatrio publication.

Contents & Structure
● The pipeline code for deploying IaC (ex: azure-pipelines.yml)

● The Terraform that describes the environment (ex: terraform/main.tf)

● Environment-specific values to be passed to Terraform (ex: dev.tfvars,
staging.tfvars, prod.tfvars)

● Branches that represent each environment deployment (ex: dev, staging, prod
branch)

terraform
├─ main.tf primary terraform code
├─ backend.tf
├─ outputs.tf
├─ variables.tf
├─ versions.tf
│
├─ dev.tfvars environment specific configuration
├─ staging.tfvars
└─ prod.tfvars

White Paper | Infrastructure as Code | June 2021

Environment-Specific Values
The Terraform configuration that describes each environment is not only represented
by the Terraform code in the terraform directory, but also by the specific environment
variable files e.g. dev.tfvars, staging.tfvars, prod.tfvars. These files contain specific
configuration for the inputs to the Terraform for their respective environment. Any
similar Terraform configuration between environments can be stored in a file like
shared-config.auto.tfvars that lives in the same folder.

GitOps Pipeline
IaC deployment pipelines are responsible for performing the codified changes to the
infrastructure resources. These deployment pipelines enforce the state of the
infrastructure and therefore must also enforce the state of the infrastructure for each
environment as well. In order to accomplish this, deployment pipelines should be run
often to ensure that infrastructure remains in the correct configuration.

White Paper | Infrastructure as Code | June 2021

WORKFLOW & TOOLS FOR IAC

With the model of defining infrastructure as code, all changes to infrastructure should
be approached similar to application code changes. The workflow will follow the same
pattern as making normal changes in software delivery, including local development,
testing, and integration, and will leverage similar tools including Git, pull requests, and
pipelines.

Local Development
Pick up the work item
As with all code changes, work begins at the ticket-level. In Azure DevOps, engineers
will pick up the work item. Following ticket-based engineering principals, code
changes and work items are linked to provide maximum visibility and traceability. The
engineer should then create the branch representing that unit of work and check it out
locally.

Branching patterns and workflow for IaC Deploy Repository

Recall that for the IaC Deploy Repository, the branching pattern should follow a
promotion path with one branch per environment. To minimize merge conflicts and
encourage better flow, changes should be made at the lowest level and merged
through pull requests to higher environments. Even for changes to the production
environment, the code change should start on the dev branch and be propagated
through the staging and prod branches through pull requests.

White Paper | Infrastructure as Code | June 2021

Write infrastructure changes and tests
Once their branch is checked out locally, the engineer will then make the infrastructure
code change. After writing the IaC, the engineer should perform some basic checks.
With Terraform, this involves three commands:

● terraform validate — ensure Terraform has all the correct configurations
present

● tflint — ensure the correct API definition for cloud provider resource definitions

● terratest — run automated tests for your infrastructure code

Info box: Terratest is used as an example integration test framework with Terraform. For
scaling considerations, Terraform should be refactored into consumable modules. For
mature teams, Terratest can be moved from running locally to running only in the PR
validation. See appendix on Terraform considerations.

Validate infrastructure changes
Before committing code and integrating changes, the engineer should validate the
changes, similar to application developers running unit tests. With Terraform,
engineers run a plan against the Azure subscription to see the expected outcome of
the infrastructure definition.

Note: To execute any Terraform against a cloud provider, the engineer will need to define
credentials to their Azure subscription. Ideally this would live within their local
environment.

● terraform plan — compare the current infrastructure with the proposed
infrastructure changes

Although developers should be free to deploy and delete their own dev infrastructure,
deploying shared infrastructure should always only happen in the pipeline (similar to
how applications should always be built and deployed from a pipeline and not from
local).

If infrastructure is deployed locally, a clean up should follow. This enables
cost-efficiency and promotes the concept of immutable infrastructure.

White Paper | Infrastructure as Code | June 2021

Commit and push
Once the infrastructure changes are validated locally, it is time for the engineer to get
ready to integrate their changes back to the main branch. With Terraform, engineers
should run terraform fmt before committing to include proper indentations and
spacing. Code should be committed and their branch should be pushed back up to
source control for a pull request and code review.

Pull Request and Code Review
Since infrastructure changes are viewed similar to application code changes, the IaC
should be developed on a branch and merged back to the main branch through the
pull request process. As mentioned earlier, all changes should start as a pull request
into the dev branch, and then are promoted to higher environments through pull
requests from one environment branch to the next.

With an IaC Deploy Repository, the dev, staging, and prod branches should all be
protected branches with proper branch policies within ADO Repos. This includes
required reviewers and build validation.

Build validation pipeline run
Since the dev, staging, and prod branches have a build validation required, there will
be a pipeline run for the pull request. However, the PR pipeline will not be deploying
any infrastructure (except infra deployed/torn down via Terratest). Instead, it will
perform the following steps:

● Validations like terraform fmt and tflint are run once on the code base.

● terraform validate should be run for each environment, not just the target
branch of the PR.

● terratest should be used to run automated tests for your infrastructure code.

● terraform plan should be run for the target branch of the PR.

We recommend having the terraform plan output attached to the pull request as a
comment that requires review.

White Paper | Infrastructure as Code | June 2021

IaC code review
An IaC pull request is similar to application code pull request because both elements
are code and therefore changes are reviewed in a similar manner by looking at the
delta. Within ADO pull requests, this view can be easily seen and maintained through
comments, suggestions, and status updates.

However, the IaC pull request is different from an application code pull request
because IaC engineers should be concerned about the pipeline logs. Even with a
successful pipeline run, they need to analyze the expected outcome of the proposed
infrastructure. With Terraform, this means reviewing the actual environment
configuration (i.e. the terraform plan) in the pipeline logs, unless it was attached to
the pull request for easier review.

Pipeline Deployment
When the pull request has been approved, the engineer can then complete the PR and
merge their change into the target branch (dev). This pipeline run will perform the
same validations as the pull request build validation, but then perform an apply
instead of plan in order to apply the desired infrastructure changes.

White Paper | Infrastructure as Code | June 2021

Testing. If a platform team is not supporting infrastructure, teams may want to
perform additional integration tests. This can be in the form of a manual validation
before deploying the application, or it can be utilizing a testing tool like Terratest,
which will spin up and teardown test infrastructure. See the appendix for our views on
IaC SDLC with Terraform or platform teams.

Approvals. With Terraform, the terraform apply requires manual approval by default
but can be by-passed for lower environments. This approval can be centrally managed
through Terraform Enterprise (see appendix).

Promotion. When the dev pipeline successfully deploys infrastructure, changes will be
promoted to the next environment through a pull request with dev as the source
branch and follow the similar pattern as described.

Teardown. Teams can also set up a separate pipeline to destroy infrastructure
resources. This should exist within the same IaC deploy repository, but should only run
on a defined schedule or be manually triggered. This may be useful in situations where
you want to tear down an environment’s infrastructure to save costs, for example
nightly or over weekends. Guardrails should be implemented to protect higher
environments from accidental destruction.

White Paper | Infrastructure as Code | June 2021

APPENDIX

Tools Index
A wholly integrated toolset provides visibility and flow of the work in progress for a
delivery team. From chat/group messaging tools, to issue tracking, to build pipelines,
all tools should work together to provide feedback, audit, and communication on the
work item. A subset of tools have become industry standard for implementing IaC
within the Azure ecosystem. Some of those tools are defined below.

● Azure Repos provides a fully featured git-based implementation for version
control of code that helps teams track changes to code over time. Proper IaC
requires that code lives in a version control system where changes to the code
can be reviewed, versioned, and tracked.

● Azure Pipelines provides the ability to build and test code by having all of the
necessary steps defined in a pipeline. Pipelines are triggered automatically
when code changes are made and include logic to perform only the necessary
steps based on the trigger. Examples of triggers include new code being
pushed to a branch, a pull request being created, or a pull request being
merged.

● Terraform acts as the orchestration tool for Infrastructure as Code. Terraform
allows infrastructure to be expressed as code and allows us to track and
maintain state changes to infrastructure so that changes can be made only as
needed and configuration drift is minimized or eliminated.

● TFLint is a Terraform linter focused on possible errors, best practices, naming
conventions, etc. TFLint looks for provider-specific invalid states in your code
and should be run early and often in the SDLC,both locally and from within
pipelines.

● Terratest is a GO library that allows us to create and automate tests for
infrastructure as code. Terratest runs integration tests on actual infrastructure
that is provisioned with Terraform.

White Paper | Infrastructure as Code | June 2021

https://docs.microsoft.com/en-us/azure/devops/repos/?view=azure-devops
https://docs.microsoft.com/en-us/azure/devops/pipelines/?view=azure-devops
https://www.terraform.io/intro/index.html
https://github.com/terraform-linters/tflint
https://github.com/gruntwork-io/terratest

Other Infrastructure Considerations
This whitepaper has focused on producing cloud infrastructure on Azure using
Terraform. Similar SDLC patterns exist to create Golden Image virtual machines using
Packer or container images using Docker. Look for another article from Liatrio for these
patterns.

Terraform Considerations
This whitepaper used vanilla Terraform as a use-case for infrastructure as code. For a
thorough implementation of IaC with Terraform, consider our opinionated views on
Terraform Enterprise, Terragrunt, and SDLC for Terraform Modules.

Platform Teams for Producer/Consumer Model
Enterprises may form a separate platform team to manage and support underlying
infrastructure images or modules. In this pattern, the platform team is responsible for
following and maintaining an SDLC around building Terraform modules, container
images, or VM golden images, while the AppDev leverages these offerings. This
producer / consumer model can work well provided the platform team follows proper
versioning and deprecating patterns and an innersourcing model for AppDev teams to
contribute. Look for a separate article from Liatrio with our recommendation on this
structure.

White Paper | Infrastructure as Code | June 2021

ABOUT LIATRIO

We Help Your Business Deliver Faster And Safer
Liatrio guides complex organizations through their digital
transformation journey, enabling them to deliver value faster
and safer with Enterprise DevOps and Cloud Native delivery.

We partner with large, successful enterprises to drive systemic change
and transformation that helps you scale your entire approach to
software delivery.

Our Core Capabilities

Enterprise
DevOps

Transformation

Cloud
Native

Delivery

Modern
Platform

Engineering
DevSecOps

Accelerate business
results and scale

your organization
with a lean,

value-driven
approach to

software delivery
and IT operations.

Empower your
teams to build

scalable apps in
dynamic

environments and
make high-impact

changes frequently
and predictably
with little toil.

Reliable
applications are
built on modern

self-service
platforms that

reduce
engineering

friction.

Speed of delivery
while always

staying safe and
secure in an

automated way.
Remove untimely,
manual, last gate
siloed approvals
and validations.

